Please check the examination details below before entering your candidate information				
Candidate surname	Other names			
Pearson Edexcel International Advanced Level	tre Number Candidate Number			
Friday 17 January 2020				
Afternoon (Time: 1 hour 20 minutes) Paper Reference WCH13/01				
Chemistry International Advanced Subsidiary/Advanced Level Unit 3: Practical Skills in Chemistry I				
Candidates must have: Scientific ca Ruler	Iculator Total Marks			

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- There is a Periodic Table on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL the questions.

Write your answers in the spaces provided.

- 1 Tests were carried out on some pairs of compounds.
 - (a) (i) Bromine water was added to separate solutions of sodium chloride and sodium iodide.

State **one** different observation for each reaction.

(2)

sodium chloride	
sodium iodide	

(ii) Name a test, with the expected observation, to confirm the presence of the sodium ion in these compounds.

(2)

Test	Observation

(b) (i) Barium chloride solution and hydrochloric acid were added to separate aqueous solutions of ammonium sulfate and ammonium nitrate.

State what would be **seen** for each compound which would allow you to distinguish between them.

(2)

ammonium sulfate
ammonium nitrate

(ii)	Give a test, with the expected result, to confirm the presence of the
	ammonium ion (NH ⁺) in the ammonium compounds.

(2)

Test	Result

(c) (i) Acidified potassium dichromate(VI) solution was added to two test tubes each containing a different alcohol. The test tubes were placed in a warm water bath.

The alcohols were propan-1-ol and 2-methylpropan-2-ol.

State what would be **seen** for each alcohol which would allow you to distinguish between them.

(2)

propan-1-ol

2-methylpropan-2-ol

(ii) Give a **chemical** test, with the expected observation, to confirm the presence of the hydroxy group.

(2)

Test	Observation

(d) Acidified potassium manganate(VII) solution was added to separate test tubes containing samples of hexane and hexene. The test tubes were shaken gently.

State what would be **seen** for each compound which would allow you to distinguish between them.

(2)

hexane..

havana

(Total for Question 1 = 14 marks)

2 A class of students carried out experiments to determine the enthalpy change for the reaction of magnesium metal with hydrochloric acid.

The following method was used.

- Step **1** A 1.00 m length of magnesium ribbon was cleaned using sandpaper, weighed and cut into 10 cm lengths.
- Step 2 50 cm³ of dilute hydrochloric acid (an excess) was placed into a polystyrene cup and the temperature measured.
- Step **3** A 10 cm length of magnesium ribbon was added to the hydrochloric acid. The solution was stirred gently and the maximum temperature recorded.

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

Results

Measurement	Value
Mass of 1.00 m of magnesium ribbon/g	0.86
Initial temperature of hydrochloric acid before addition of magnesium ribbon/°C	21.4
Final temperature of solution/°C	29.2

(a) (i) Calculate the number of moles of magnesium in the 10 cm length of ribbon used in this experiment. [A_r value: Mg = 24.3]

(2)

(ii) Calculate the enthalpy change for this reaction including a sign and units. Give your answer to an appropriate number of significant figures.

Data:

Specific heat capacity of the solution = $4.2 \, \mathrm{Jg^{-1} \, \circ C^{-1}}$

The density of the reaction mixture = $1.0 \,\mathrm{g}\,\mathrm{cm}^{-3}$

(4)

(b) (i) The maximum uncertainty each time the thermometer was read was \pm 0.1 °C. Calculate the percentage uncertainty in measuring the temperature change in this experiment.

(1)

(ii) Suggest **one** way of reducing the percentage uncertainty in measuring the temperature change without changing the apparatus or just repeating the experiment. Justify your answer.

(2)

(c)	One student carried out the same experiment but used a glass beaker instead of a polystyrene cup.		
	State how this would affect the value of the enthalpy change obtained. Justify your answer.		
		(2)	
(d)	Explain why the magnesium ribbon was cleaned with sandpaper before being weigl	hed. (2)	
	(Total for Question 2 = 13 mark	(s)	

BLANK PAGE

An experiment was carried out to determine the purity of solid sodium carbonate, Na₂CO₃. The following procedure was used.

4.89 g of impure sodium carbonate was weighed and dissolved in distilled water.

The solution and washings were transferred to a 250.0 cm³ volumetric flask, and the liquid level made up to the mark with distilled water and the flask shaken.

A pipette was used to transfer 25.0 cm³ portions of the solution to conical flasks.

Each portion of the solution was then titrated with hydrochloric acid of concentration 0.200 mol dm⁻³.

$$Na_2CO_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(I) + CO_2(g)$$

(a) The indicator used was methyl orange. State the colour change at the end-point.

(2)

(b)

Results

Number of titration	1	2	3	4
Burette reading (final)/cm³	27.55	26.25	28.30	26.15
Burette reading (start)/cm ³	0.00	0.05	1.05	0.05
Volume of HCl(aq)/cm³				

(i) Complete the table and, using appropriate titrations, calculate the mean titre.

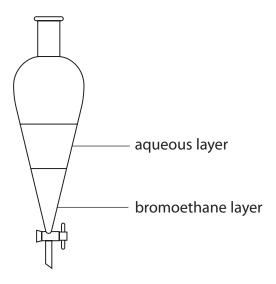
(2)

(ii) Calculate the percentage purity, by mass, of the sodium carbonate.

(5)

(Total for Question 3 = 9 marks)

4	Bromoethane can be prepared by reacting ethanol with a mixture of sodium bromide and concentrated sulfuric acid.				
	(a) Step 1	5 cm ³ of ethanol and 5 cm ³ of water are added to a round-bottomed flask. The flask is placed in an ice bath and 5 cm ³ of concentrated sulfuric acid is added slowly. During this process the flask is shaken gently.			
	Explai	in why the sulfuric acid must be added slowly.			
			(2)		
	(b) Step:	6.0 g of solid potassium bromide is ground up into a fine powder using a pestle and mortar. The powder is then added to the round-bottomed flask containing the ethanol and concentrated sulfuric acid. The mixture is heated.			
	State	why the potassium bromide is ground up to a fine powder. Justify your ansv	ver. (2)		


- (c) Step 3 The crude bromoethane formed in Step 2 is distilled off.
 - (i) Draw a labelled diagram to show the apparatus suitable for this distillation. Include a thermometer but no clamps or stands.

(3)

State how anti-bumping granules prevent bumping in the distillation flask.	(1)

(d) Step **4** The distillate from Step **3** is transferred to a separating funnel where it separates into an aqueous layer and a layer containing impure bromoethane.

- (i) State **two** physical properties of bromoethane that can be deduced from this diagram. (2)
- (ii) Describe how the aqueous layer could be removed from the separating funnel.

 (1)

(e) Step 5 After removing the aqueous layer, sodium hydrogencarbonate solution is added to the impure bromoethane in a separating funnel and the two layers separated again.	
State why sodium hydrogencarbonate solution is added to the impure bromoethane (2. 1)
(f) Step 6 The bromoethane is placed into a sample bottle and a drying agent is added	d.
(i) Identify, by name or formula, a suitable drying agent.	1)
(ii) Describe how the appearance of the bromoethane changes after the drying agent has been added and the mixture allowed to stand.	1)
(Total for Question 4 = 14 mark	s)
TOTAL FOR PAPER = 50 MARK	(S

BLANK PAGE

BLANK PAGE

lawrencium

nobelium

mendelevium

fermium

californium einsteinium

berkelium

americium

plutonium

Np neptunium

uranium

protactinium

thorium

4

93

92

5

8

86

5

103

۲

ဍ

[257]

[254]

[256] ٧

[253] Fn

[254]

[251] ರ

[245] **Bk**

[247] Carrier Grief

[243] Αm

[242]

[237]

[231] B

58 232

Es

lutetium

ytterbium

Ą

Tm thulium

erbium

щ

Dy Ho dysprosium holmium

terbium

gadolinium

samarium europium

xaseodymium neodymium promethium

Cerium

9

В

157

152

150 Sm

[147]

141

4

7

110

109

108

107

106

105

6

69

67

99

169

krypton 36 **He** 20.2 **N**eon use 39.9 argon 18 83.8 131.3 Xenon **Rn** radon 86 [222] (18) 4.0 Αr 호 Elements with atomic numbers 112-116 have been reported **Br** bromine **Cl** chlorine astatine 85 fluorine 126.9 iodine 19.0 79.9 35.5 [210] 53 **Se** selenium **Te** tellurium polonium oxygen 8 127.6 sulfur 79.0 [209] but not fully authenticated 25 34 84 0 9 hosphorus bismuth 83 nitrogen 7 antimony **As** arsenic 121.8 209.0 31.0 74.9 Sb Ŋ germanium 32 carbon 28.1 **Si** silicon 72.6 118.7 207.2 ge **Pb** lead 9 4 aluminium **Ga** gallium thallium 114.8 **In** 204.4 10.8 **B** 69.7 49 31 **Cd** cadmium mercury 80 The Periodic Table of Elements 200.6 112.4 Zn zinc 30 48 **Rg** roentgenium 107.9 197.0 Cu copper 29 **Ag** silver [272] Au Ds damstadtium r **Pd** palladium platinum 106.4 195.1 **A**inickel [271] ጟ 78 meitnerium rhodium iridium 102.9 Co cobalt 27 192.2 [268] 58.9 ¥ 윤 45 6 1 ruthenium 1.0 **H** hydrogen Hs hassium 190.2 osmium 101.1 [277] <u>a</u> .⊑ 9/ 8 technetium manganese **Re** rhenium [264] **Bh** bohrium 186.2 년 일 75 43 0 **Sg** seaborgium tungsten 74 chromium nolybdenum 183.8 95.9 [566] 42 ≥ atomic (proton) number relative atomic mass atomic symbol vanadium **Db** dubnium **Nb** tantalum 180.9 [262] 92.9 Key (2) 4 ntherfordium zirconium hafnium titanium 178.5 91.2 [261] **Rf** 4 9 anthanum scandium actinium yttrium 138.9 88.9 ۲a* Ac* [227] $\widehat{\mathbb{C}}$ 39 22 Mg magnesium Ca calcium 20 strontium peryllium **Ba** barium **Ra** radium 137.3 87.6 24.3 [226] 40.1 9.0 Ş 26 7 85.5 **Rb** rubidium otassium rancium lithium caesium 132.9 sodium 23.0 39.1 [223] 6.9 19 37

^{*} Lanthanide series

^{*} Actinide series